3.4.64 \(\int \frac {1}{x^4 (1-x^4+x^8)} \, dx\) [364]

3.4.64.1 Optimal result
3.4.64.2 Mathematica [C] (verified)
3.4.64.3 Rubi [A] (verified)
3.4.64.4 Maple [C] (verified)
3.4.64.5 Fricas [C] (verification not implemented)
3.4.64.6 Sympy [A] (verification not implemented)
3.4.64.7 Maxima [F]
3.4.64.8 Giac [A] (verification not implemented)
3.4.64.9 Mupad [B] (verification not implemented)

3.4.64.1 Optimal result

Integrand size = 16, antiderivative size = 370 \[ \int \frac {1}{x^4 \left (1-x^4+x^8\right )} \, dx=-\frac {1}{3 x^3}-\frac {1}{4} \sqrt {\frac {1}{3} \left (2+\sqrt {3}\right )} \arctan \left (\frac {\sqrt {2-\sqrt {3}}-2 x}{\sqrt {2+\sqrt {3}}}\right )+\frac {1}{4} \sqrt {\frac {1}{3} \left (2-\sqrt {3}\right )} \arctan \left (\frac {\sqrt {2+\sqrt {3}}-2 x}{\sqrt {2-\sqrt {3}}}\right )+\frac {1}{4} \sqrt {\frac {1}{3} \left (2+\sqrt {3}\right )} \arctan \left (\frac {\sqrt {2-\sqrt {3}}+2 x}{\sqrt {2+\sqrt {3}}}\right )-\frac {1}{4} \sqrt {\frac {1}{3} \left (2-\sqrt {3}\right )} \arctan \left (\frac {\sqrt {2+\sqrt {3}}+2 x}{\sqrt {2-\sqrt {3}}}\right )+\frac {1}{8} \sqrt {\frac {1}{3} \left (2-\sqrt {3}\right )} \log \left (1-\sqrt {2-\sqrt {3}} x+x^2\right )-\frac {1}{8} \sqrt {\frac {1}{3} \left (2-\sqrt {3}\right )} \log \left (1+\sqrt {2-\sqrt {3}} x+x^2\right )-\frac {1}{8} \sqrt {\frac {1}{3} \left (2+\sqrt {3}\right )} \log \left (1-\sqrt {2+\sqrt {3}} x+x^2\right )+\frac {1}{8} \sqrt {\frac {1}{3} \left (2+\sqrt {3}\right )} \log \left (1+\sqrt {2+\sqrt {3}} x+x^2\right ) \]

output
-1/3/x^3+1/4*arctan((-2*x+1/2*6^(1/2)+1/2*2^(1/2))/(1/2*6^(1/2)-1/2*2^(1/2 
)))*(1/2*2^(1/2)-1/6*6^(1/2))-1/4*arctan((2*x+1/2*6^(1/2)+1/2*2^(1/2))/(1/ 
2*6^(1/2)-1/2*2^(1/2)))*(1/2*2^(1/2)-1/6*6^(1/2))+1/8*ln(1+x^2-x*(1/2*6^(1 
/2)-1/2*2^(1/2)))*(1/2*2^(1/2)-1/6*6^(1/2))-1/8*ln(1+x^2+x*(1/2*6^(1/2)-1/ 
2*2^(1/2)))*(1/2*2^(1/2)-1/6*6^(1/2))-1/4*arctan((-2*x+1/2*6^(1/2)-1/2*2^( 
1/2))/(1/2*6^(1/2)+1/2*2^(1/2)))*(1/2*2^(1/2)+1/6*6^(1/2))+1/4*arctan((2*x 
+1/2*6^(1/2)-1/2*2^(1/2))/(1/2*6^(1/2)+1/2*2^(1/2)))*(1/2*2^(1/2)+1/6*6^(1 
/2))-1/8*ln(1+x^2-x*(1/2*6^(1/2)+1/2*2^(1/2)))*(1/2*2^(1/2)+1/6*6^(1/2))+1 
/8*ln(1+x^2+x*(1/2*6^(1/2)+1/2*2^(1/2)))*(1/2*2^(1/2)+1/6*6^(1/2))
 
3.4.64.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.01 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.18 \[ \int \frac {1}{x^4 \left (1-x^4+x^8\right )} \, dx=-\frac {1}{3 x^3}-\frac {1}{4} \text {RootSum}\left [1-\text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-\log (x-\text {$\#$1})+\log (x-\text {$\#$1}) \text {$\#$1}^4}{-\text {$\#$1}^3+2 \text {$\#$1}^7}\&\right ] \]

input
Integrate[1/(x^4*(1 - x^4 + x^8)),x]
 
output
-1/3*1/x^3 - RootSum[1 - #1^4 + #1^8 & , (-Log[x - #1] + Log[x - #1]*#1^4) 
/(-#1^3 + 2*#1^7) & ]/4
 
3.4.64.3 Rubi [A] (verified)

Time = 0.63 (sec) , antiderivative size = 354, normalized size of antiderivative = 0.96, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.625, Rules used = {1704, 27, 1751, 25, 1483, 1142, 25, 1083, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^4 \left (x^8-x^4+1\right )} \, dx\)

\(\Big \downarrow \) 1704

\(\displaystyle \frac {1}{3} \int \frac {3 \left (1-x^4\right )}{x^8-x^4+1}dx-\frac {1}{3 x^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {1-x^4}{x^8-x^4+1}dx-\frac {1}{3 x^3}\)

\(\Big \downarrow \) 1751

\(\displaystyle -\frac {\int -\frac {\sqrt {3}-2 x^2}{x^4-\sqrt {3} x^2+1}dx}{2 \sqrt {3}}-\frac {\int -\frac {2 x^2+\sqrt {3}}{x^4+\sqrt {3} x^2+1}dx}{2 \sqrt {3}}-\frac {1}{3 x^3}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {\sqrt {3}-2 x^2}{x^4-\sqrt {3} x^2+1}dx}{2 \sqrt {3}}+\frac {\int \frac {2 x^2+\sqrt {3}}{x^4+\sqrt {3} x^2+1}dx}{2 \sqrt {3}}-\frac {1}{3 x^3}\)

\(\Big \downarrow \) 1483

\(\displaystyle \frac {\frac {\int \frac {\left (2-\sqrt {3}\right ) x+\sqrt {3 \left (2-\sqrt {3}\right )}}{x^2-\sqrt {2-\sqrt {3}} x+1}dx}{2 \sqrt {2-\sqrt {3}}}+\frac {\int \frac {\sqrt {3 \left (2-\sqrt {3}\right )}-\left (2-\sqrt {3}\right ) x}{x^2+\sqrt {2-\sqrt {3}} x+1}dx}{2 \sqrt {2-\sqrt {3}}}}{2 \sqrt {3}}+\frac {\frac {\int \frac {\sqrt {3 \left (2+\sqrt {3}\right )}-\left (2+\sqrt {3}\right ) x}{x^2-\sqrt {2+\sqrt {3}} x+1}dx}{2 \sqrt {2+\sqrt {3}}}+\frac {\int \frac {\left (2+\sqrt {3}\right ) x+\sqrt {3 \left (2+\sqrt {3}\right )}}{x^2+\sqrt {2+\sqrt {3}} x+1}dx}{2 \sqrt {2+\sqrt {3}}}}{2 \sqrt {3}}-\frac {1}{3 x^3}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {\frac {\frac {1}{2} \sqrt {2+\sqrt {3}} \int \frac {1}{x^2-\sqrt {2-\sqrt {3}} x+1}dx+\frac {1}{2} \left (2-\sqrt {3}\right ) \int -\frac {\sqrt {2-\sqrt {3}}-2 x}{x^2-\sqrt {2-\sqrt {3}} x+1}dx}{2 \sqrt {2-\sqrt {3}}}+\frac {\frac {1}{2} \sqrt {2+\sqrt {3}} \int \frac {1}{x^2+\sqrt {2-\sqrt {3}} x+1}dx-\frac {1}{2} \left (2-\sqrt {3}\right ) \int \frac {2 x+\sqrt {2-\sqrt {3}}}{x^2+\sqrt {2-\sqrt {3}} x+1}dx}{2 \sqrt {2-\sqrt {3}}}}{2 \sqrt {3}}+\frac {\frac {-\frac {1}{2} \sqrt {2-\sqrt {3}} \int \frac {1}{x^2-\sqrt {2+\sqrt {3}} x+1}dx-\frac {1}{2} \left (2+\sqrt {3}\right ) \int -\frac {\sqrt {2+\sqrt {3}}-2 x}{x^2-\sqrt {2+\sqrt {3}} x+1}dx}{2 \sqrt {2+\sqrt {3}}}+\frac {\frac {1}{2} \left (2+\sqrt {3}\right ) \int \frac {2 x+\sqrt {2+\sqrt {3}}}{x^2+\sqrt {2+\sqrt {3}} x+1}dx-\frac {1}{2} \sqrt {2-\sqrt {3}} \int \frac {1}{x^2+\sqrt {2+\sqrt {3}} x+1}dx}{2 \sqrt {2+\sqrt {3}}}}{2 \sqrt {3}}-\frac {1}{3 x^3}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\frac {1}{2} \sqrt {2+\sqrt {3}} \int \frac {1}{x^2-\sqrt {2-\sqrt {3}} x+1}dx-\frac {1}{2} \left (2-\sqrt {3}\right ) \int \frac {\sqrt {2-\sqrt {3}}-2 x}{x^2-\sqrt {2-\sqrt {3}} x+1}dx}{2 \sqrt {2-\sqrt {3}}}+\frac {\frac {1}{2} \sqrt {2+\sqrt {3}} \int \frac {1}{x^2+\sqrt {2-\sqrt {3}} x+1}dx-\frac {1}{2} \left (2-\sqrt {3}\right ) \int \frac {2 x+\sqrt {2-\sqrt {3}}}{x^2+\sqrt {2-\sqrt {3}} x+1}dx}{2 \sqrt {2-\sqrt {3}}}}{2 \sqrt {3}}+\frac {\frac {\frac {1}{2} \left (2+\sqrt {3}\right ) \int \frac {\sqrt {2+\sqrt {3}}-2 x}{x^2-\sqrt {2+\sqrt {3}} x+1}dx-\frac {1}{2} \sqrt {2-\sqrt {3}} \int \frac {1}{x^2-\sqrt {2+\sqrt {3}} x+1}dx}{2 \sqrt {2+\sqrt {3}}}+\frac {\frac {1}{2} \left (2+\sqrt {3}\right ) \int \frac {2 x+\sqrt {2+\sqrt {3}}}{x^2+\sqrt {2+\sqrt {3}} x+1}dx-\frac {1}{2} \sqrt {2-\sqrt {3}} \int \frac {1}{x^2+\sqrt {2+\sqrt {3}} x+1}dx}{2 \sqrt {2+\sqrt {3}}}}{2 \sqrt {3}}-\frac {1}{3 x^3}\)

\(\Big \downarrow \) 1083

\(\displaystyle \frac {\frac {-\frac {1}{2} \left (2-\sqrt {3}\right ) \int \frac {\sqrt {2-\sqrt {3}}-2 x}{x^2-\sqrt {2-\sqrt {3}} x+1}dx-\sqrt {2+\sqrt {3}} \int \frac {1}{-\left (2 x-\sqrt {2-\sqrt {3}}\right )^2-\sqrt {3}-2}d\left (2 x-\sqrt {2-\sqrt {3}}\right )}{2 \sqrt {2-\sqrt {3}}}+\frac {-\frac {1}{2} \left (2-\sqrt {3}\right ) \int \frac {2 x+\sqrt {2-\sqrt {3}}}{x^2+\sqrt {2-\sqrt {3}} x+1}dx-\sqrt {2+\sqrt {3}} \int \frac {1}{-\left (2 x+\sqrt {2-\sqrt {3}}\right )^2-\sqrt {3}-2}d\left (2 x+\sqrt {2-\sqrt {3}}\right )}{2 \sqrt {2-\sqrt {3}}}}{2 \sqrt {3}}+\frac {\frac {\frac {1}{2} \left (2+\sqrt {3}\right ) \int \frac {\sqrt {2+\sqrt {3}}-2 x}{x^2-\sqrt {2+\sqrt {3}} x+1}dx+\sqrt {2-\sqrt {3}} \int \frac {1}{-\left (2 x-\sqrt {2+\sqrt {3}}\right )^2+\sqrt {3}-2}d\left (2 x-\sqrt {2+\sqrt {3}}\right )}{2 \sqrt {2+\sqrt {3}}}+\frac {\frac {1}{2} \left (2+\sqrt {3}\right ) \int \frac {2 x+\sqrt {2+\sqrt {3}}}{x^2+\sqrt {2+\sqrt {3}} x+1}dx+\sqrt {2-\sqrt {3}} \int \frac {1}{-\left (2 x+\sqrt {2+\sqrt {3}}\right )^2+\sqrt {3}-2}d\left (2 x+\sqrt {2+\sqrt {3}}\right )}{2 \sqrt {2+\sqrt {3}}}}{2 \sqrt {3}}-\frac {1}{3 x^3}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {\arctan \left (\frac {2 x-\sqrt {2-\sqrt {3}}}{\sqrt {2+\sqrt {3}}}\right )-\frac {1}{2} \left (2-\sqrt {3}\right ) \int \frac {\sqrt {2-\sqrt {3}}-2 x}{x^2-\sqrt {2-\sqrt {3}} x+1}dx}{2 \sqrt {2-\sqrt {3}}}+\frac {\arctan \left (\frac {2 x+\sqrt {2-\sqrt {3}}}{\sqrt {2+\sqrt {3}}}\right )-\frac {1}{2} \left (2-\sqrt {3}\right ) \int \frac {2 x+\sqrt {2-\sqrt {3}}}{x^2+\sqrt {2-\sqrt {3}} x+1}dx}{2 \sqrt {2-\sqrt {3}}}}{2 \sqrt {3}}+\frac {\frac {\frac {1}{2} \left (2+\sqrt {3}\right ) \int \frac {\sqrt {2+\sqrt {3}}-2 x}{x^2-\sqrt {2+\sqrt {3}} x+1}dx-\arctan \left (\frac {2 x-\sqrt {2+\sqrt {3}}}{\sqrt {2-\sqrt {3}}}\right )}{2 \sqrt {2+\sqrt {3}}}+\frac {\frac {1}{2} \left (2+\sqrt {3}\right ) \int \frac {2 x+\sqrt {2+\sqrt {3}}}{x^2+\sqrt {2+\sqrt {3}} x+1}dx-\arctan \left (\frac {2 x+\sqrt {2+\sqrt {3}}}{\sqrt {2-\sqrt {3}}}\right )}{2 \sqrt {2+\sqrt {3}}}}{2 \sqrt {3}}-\frac {1}{3 x^3}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {\frac {\arctan \left (\frac {2 x-\sqrt {2-\sqrt {3}}}{\sqrt {2+\sqrt {3}}}\right )+\frac {1}{2} \left (2-\sqrt {3}\right ) \log \left (x^2-\sqrt {2-\sqrt {3}} x+1\right )}{2 \sqrt {2-\sqrt {3}}}+\frac {\arctan \left (\frac {2 x+\sqrt {2-\sqrt {3}}}{\sqrt {2+\sqrt {3}}}\right )-\frac {1}{2} \left (2-\sqrt {3}\right ) \log \left (x^2+\sqrt {2-\sqrt {3}} x+1\right )}{2 \sqrt {2-\sqrt {3}}}}{2 \sqrt {3}}+\frac {\frac {-\arctan \left (\frac {2 x-\sqrt {2+\sqrt {3}}}{\sqrt {2-\sqrt {3}}}\right )-\frac {1}{2} \left (2+\sqrt {3}\right ) \log \left (x^2-\sqrt {2+\sqrt {3}} x+1\right )}{2 \sqrt {2+\sqrt {3}}}+\frac {\frac {1}{2} \left (2+\sqrt {3}\right ) \log \left (x^2+\sqrt {2+\sqrt {3}} x+1\right )-\arctan \left (\frac {2 x+\sqrt {2+\sqrt {3}}}{\sqrt {2-\sqrt {3}}}\right )}{2 \sqrt {2+\sqrt {3}}}}{2 \sqrt {3}}-\frac {1}{3 x^3}\)

input
Int[1/(x^4*(1 - x^4 + x^8)),x]
 
output
-1/3*1/x^3 + ((ArcTan[(-Sqrt[2 - Sqrt[3]] + 2*x)/Sqrt[2 + Sqrt[3]]] + ((2 
- Sqrt[3])*Log[1 - Sqrt[2 - Sqrt[3]]*x + x^2])/2)/(2*Sqrt[2 - Sqrt[3]]) + 
(ArcTan[(Sqrt[2 - Sqrt[3]] + 2*x)/Sqrt[2 + Sqrt[3]]] - ((2 - Sqrt[3])*Log[ 
1 + Sqrt[2 - Sqrt[3]]*x + x^2])/2)/(2*Sqrt[2 - Sqrt[3]]))/(2*Sqrt[3]) + (( 
-ArcTan[(-Sqrt[2 + Sqrt[3]] + 2*x)/Sqrt[2 - Sqrt[3]]] - ((2 + Sqrt[3])*Log 
[1 - Sqrt[2 + Sqrt[3]]*x + x^2])/2)/(2*Sqrt[2 + Sqrt[3]]) + (-ArcTan[(Sqrt 
[2 + Sqrt[3]] + 2*x)/Sqrt[2 - Sqrt[3]]] + ((2 + Sqrt[3])*Log[1 + Sqrt[2 + 
Sqrt[3]]*x + x^2])/2)/(2*Sqrt[2 + Sqrt[3]]))/(2*Sqrt[3])
 

3.4.64.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 

rule 1483
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[a/c, 2]}, With[{r = Rt[2*q - b/c, 2]}, Simp[1/(2*c*q*r)   In 
t[(d*r - (d - e*q)*x)/(q - r*x + x^2), x], x] + Simp[1/(2*c*q*r)   Int[(d*r 
 + (d - e*q)*x)/(q + r*x + x^2), x], x]]] /; FreeQ[{a, b, c, d, e}, x] && N 
eQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NegQ[b^2 - 4*a*c]
 

rule 1704
Int[((d_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_ 
Symbol] :> Simp[(d*x)^(m + 1)*((a + b*x^n + c*x^(2*n))^(p + 1)/(a*d*(m + 1) 
)), x] - Simp[1/(a*d^n*(m + 1))   Int[(d*x)^(m + n)*(b*(m + n*(p + 1) + 1) 
+ c*(m + 2*n*(p + 1) + 1)*x^n)*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{ 
a, b, c, d, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && 
LtQ[m, -1] && IntegerQ[p]
 

rule 1751
Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x 
_Symbol] :> With[{q = Rt[-2*(d/e) - b/c, 2]}, Simp[e/(2*c*q)   Int[(q - 2*x 
^(n/2))/Simp[d/e + q*x^(n/2) - x^n, x], x], x] + Simp[e/(2*c*q)   Int[(q + 
2*x^(n/2))/Simp[d/e - q*x^(n/2) - x^n, x], x], x]] /; FreeQ[{a, b, c, d, e} 
, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2, 0] && IGt 
Q[n/2, 0] &&  !GtQ[b^2 - 4*a*c, 0]
 
3.4.64.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.09 (sec) , antiderivative size = 38, normalized size of antiderivative = 0.10

method result size
risch \(-\frac {1}{3 x^{3}}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (81 \textit {\_Z}^{8}-9 \textit {\_Z}^{4}+1\right )}{\sum }\textit {\_R} \ln \left (-9 \textit {\_R}^{5}+2 \textit {\_R} +x \right )\right )}{4}\) \(38\)
default \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}-\textit {\_Z}^{4}+1\right )}{\sum }\frac {\left (-\textit {\_R}^{4}+1\right ) \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{7}-\textit {\_R}^{3}}\right )}{4}-\frac {1}{3 x^{3}}\) \(50\)

input
int(1/x^4/(x^8-x^4+1),x,method=_RETURNVERBOSE)
 
output
-1/3/x^3+1/4*sum(_R*ln(-9*_R^5+2*_R+x),_R=RootOf(81*_Z^8-9*_Z^4+1))
 
3.4.64.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.26 (sec) , antiderivative size = 443, normalized size of antiderivative = 1.20 \[ \int \frac {1}{x^4 \left (1-x^4+x^8\right )} \, dx=\frac {\sqrt {6} x^{3} \sqrt {\sqrt {2} \sqrt {-i \, \sqrt {3} + 1}} \log \left (\sqrt {6} \sqrt {\sqrt {2} \sqrt {-i \, \sqrt {3} + 1}} {\left (i \, \sqrt {3} + 3\right )} + 12 \, x\right ) + \sqrt {6} x^{3} \sqrt {-\sqrt {2} \sqrt {-i \, \sqrt {3} + 1}} \log \left (\sqrt {6} \sqrt {-\sqrt {2} \sqrt {-i \, \sqrt {3} + 1}} {\left (i \, \sqrt {3} + 3\right )} + 12 \, x\right ) - \sqrt {6} x^{3} \sqrt {\sqrt {2} \sqrt {i \, \sqrt {3} + 1}} \log \left (\sqrt {6} \sqrt {\sqrt {2} \sqrt {i \, \sqrt {3} + 1}} {\left (i \, \sqrt {3} - 3\right )} + 12 \, x\right ) - \sqrt {6} x^{3} \sqrt {-\sqrt {2} \sqrt {i \, \sqrt {3} + 1}} \log \left (\sqrt {6} \sqrt {-\sqrt {2} \sqrt {i \, \sqrt {3} + 1}} {\left (i \, \sqrt {3} - 3\right )} + 12 \, x\right ) + \sqrt {6} x^{3} \sqrt {\sqrt {2} \sqrt {i \, \sqrt {3} + 1}} \log \left (\sqrt {6} \sqrt {\sqrt {2} \sqrt {i \, \sqrt {3} + 1}} {\left (-i \, \sqrt {3} + 3\right )} + 12 \, x\right ) + \sqrt {6} x^{3} \sqrt {-\sqrt {2} \sqrt {i \, \sqrt {3} + 1}} \log \left (\sqrt {6} \sqrt {-\sqrt {2} \sqrt {i \, \sqrt {3} + 1}} {\left (-i \, \sqrt {3} + 3\right )} + 12 \, x\right ) - \sqrt {6} x^{3} \sqrt {\sqrt {2} \sqrt {-i \, \sqrt {3} + 1}} \log \left (\sqrt {6} \sqrt {\sqrt {2} \sqrt {-i \, \sqrt {3} + 1}} {\left (-i \, \sqrt {3} - 3\right )} + 12 \, x\right ) - \sqrt {6} x^{3} \sqrt {-\sqrt {2} \sqrt {-i \, \sqrt {3} + 1}} \log \left (\sqrt {6} \sqrt {-\sqrt {2} \sqrt {-i \, \sqrt {3} + 1}} {\left (-i \, \sqrt {3} - 3\right )} + 12 \, x\right ) - 8}{24 \, x^{3}} \]

input
integrate(1/x^4/(x^8-x^4+1),x, algorithm="fricas")
 
output
1/24*(sqrt(6)*x^3*sqrt(sqrt(2)*sqrt(-I*sqrt(3) + 1))*log(sqrt(6)*sqrt(sqrt 
(2)*sqrt(-I*sqrt(3) + 1))*(I*sqrt(3) + 3) + 12*x) + sqrt(6)*x^3*sqrt(-sqrt 
(2)*sqrt(-I*sqrt(3) + 1))*log(sqrt(6)*sqrt(-sqrt(2)*sqrt(-I*sqrt(3) + 1))* 
(I*sqrt(3) + 3) + 12*x) - sqrt(6)*x^3*sqrt(sqrt(2)*sqrt(I*sqrt(3) + 1))*lo 
g(sqrt(6)*sqrt(sqrt(2)*sqrt(I*sqrt(3) + 1))*(I*sqrt(3) - 3) + 12*x) - sqrt 
(6)*x^3*sqrt(-sqrt(2)*sqrt(I*sqrt(3) + 1))*log(sqrt(6)*sqrt(-sqrt(2)*sqrt( 
I*sqrt(3) + 1))*(I*sqrt(3) - 3) + 12*x) + sqrt(6)*x^3*sqrt(sqrt(2)*sqrt(I* 
sqrt(3) + 1))*log(sqrt(6)*sqrt(sqrt(2)*sqrt(I*sqrt(3) + 1))*(-I*sqrt(3) + 
3) + 12*x) + sqrt(6)*x^3*sqrt(-sqrt(2)*sqrt(I*sqrt(3) + 1))*log(sqrt(6)*sq 
rt(-sqrt(2)*sqrt(I*sqrt(3) + 1))*(-I*sqrt(3) + 3) + 12*x) - sqrt(6)*x^3*sq 
rt(sqrt(2)*sqrt(-I*sqrt(3) + 1))*log(sqrt(6)*sqrt(sqrt(2)*sqrt(-I*sqrt(3) 
+ 1))*(-I*sqrt(3) - 3) + 12*x) - sqrt(6)*x^3*sqrt(-sqrt(2)*sqrt(-I*sqrt(3) 
 + 1))*log(sqrt(6)*sqrt(-sqrt(2)*sqrt(-I*sqrt(3) + 1))*(-I*sqrt(3) - 3) + 
12*x) - 8)/x^3
 
3.4.64.6 Sympy [A] (verification not implemented)

Time = 1.49 (sec) , antiderivative size = 31, normalized size of antiderivative = 0.08 \[ \int \frac {1}{x^4 \left (1-x^4+x^8\right )} \, dx=\operatorname {RootSum} {\left (5308416 t^{8} - 2304 t^{4} + 1, \left ( t \mapsto t \log {\left (- 9216 t^{5} + 8 t + x \right )} \right )\right )} - \frac {1}{3 x^{3}} \]

input
integrate(1/x**4/(x**8-x**4+1),x)
 
output
RootSum(5308416*_t**8 - 2304*_t**4 + 1, Lambda(_t, _t*log(-9216*_t**5 + 8* 
_t + x))) - 1/(3*x**3)
 
3.4.64.7 Maxima [F]

\[ \int \frac {1}{x^4 \left (1-x^4+x^8\right )} \, dx=\int { \frac {1}{{\left (x^{8} - x^{4} + 1\right )} x^{4}} \,d x } \]

input
integrate(1/x^4/(x^8-x^4+1),x, algorithm="maxima")
 
output
-1/3/x^3 - integrate((x^4 - 1)/(x^8 - x^4 + 1), x)
 
3.4.64.8 Giac [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 258, normalized size of antiderivative = 0.70 \[ \int \frac {1}{x^4 \left (1-x^4+x^8\right )} \, dx=\frac {1}{24} \, {\left (\sqrt {6} + 3 \, \sqrt {2}\right )} \arctan \left (\frac {4 \, x + \sqrt {6} - \sqrt {2}}{\sqrt {6} + \sqrt {2}}\right ) + \frac {1}{24} \, {\left (\sqrt {6} + 3 \, \sqrt {2}\right )} \arctan \left (\frac {4 \, x - \sqrt {6} + \sqrt {2}}{\sqrt {6} + \sqrt {2}}\right ) + \frac {1}{24} \, {\left (\sqrt {6} - 3 \, \sqrt {2}\right )} \arctan \left (\frac {4 \, x + \sqrt {6} + \sqrt {2}}{\sqrt {6} - \sqrt {2}}\right ) + \frac {1}{24} \, {\left (\sqrt {6} - 3 \, \sqrt {2}\right )} \arctan \left (\frac {4 \, x - \sqrt {6} - \sqrt {2}}{\sqrt {6} - \sqrt {2}}\right ) + \frac {1}{48} \, {\left (\sqrt {6} + 3 \, \sqrt {2}\right )} \log \left (x^{2} + \frac {1}{2} \, x {\left (\sqrt {6} + \sqrt {2}\right )} + 1\right ) - \frac {1}{48} \, {\left (\sqrt {6} + 3 \, \sqrt {2}\right )} \log \left (x^{2} - \frac {1}{2} \, x {\left (\sqrt {6} + \sqrt {2}\right )} + 1\right ) + \frac {1}{48} \, {\left (\sqrt {6} - 3 \, \sqrt {2}\right )} \log \left (x^{2} + \frac {1}{2} \, x {\left (\sqrt {6} - \sqrt {2}\right )} + 1\right ) - \frac {1}{48} \, {\left (\sqrt {6} - 3 \, \sqrt {2}\right )} \log \left (x^{2} - \frac {1}{2} \, x {\left (\sqrt {6} - \sqrt {2}\right )} + 1\right ) - \frac {1}{3 \, x^{3}} \]

input
integrate(1/x^4/(x^8-x^4+1),x, algorithm="giac")
 
output
1/24*(sqrt(6) + 3*sqrt(2))*arctan((4*x + sqrt(6) - sqrt(2))/(sqrt(6) + sqr 
t(2))) + 1/24*(sqrt(6) + 3*sqrt(2))*arctan((4*x - sqrt(6) + sqrt(2))/(sqrt 
(6) + sqrt(2))) + 1/24*(sqrt(6) - 3*sqrt(2))*arctan((4*x + sqrt(6) + sqrt( 
2))/(sqrt(6) - sqrt(2))) + 1/24*(sqrt(6) - 3*sqrt(2))*arctan((4*x - sqrt(6 
) - sqrt(2))/(sqrt(6) - sqrt(2))) + 1/48*(sqrt(6) + 3*sqrt(2))*log(x^2 + 1 
/2*x*(sqrt(6) + sqrt(2)) + 1) - 1/48*(sqrt(6) + 3*sqrt(2))*log(x^2 - 1/2*x 
*(sqrt(6) + sqrt(2)) + 1) + 1/48*(sqrt(6) - 3*sqrt(2))*log(x^2 + 1/2*x*(sq 
rt(6) - sqrt(2)) + 1) - 1/48*(sqrt(6) - 3*sqrt(2))*log(x^2 - 1/2*x*(sqrt(6 
) - sqrt(2)) + 1) - 1/3/x^3
 
3.4.64.9 Mupad [B] (verification not implemented)

Time = 8.35 (sec) , antiderivative size = 213, normalized size of antiderivative = 0.58 \[ \int \frac {1}{x^4 \left (1-x^4+x^8\right )} \, dx=-\frac {1}{3\,x^3}-\frac {\sqrt {3}\,\mathrm {atan}\left (\frac {x}{{\left (8-\sqrt {3}\,8{}\mathrm {i}\right )}^{1/4}}+\frac {\sqrt {3}\,x\,1{}\mathrm {i}}{{\left (8-\sqrt {3}\,8{}\mathrm {i}\right )}^{1/4}}\right )\,{\left (8-\sqrt {3}\,8{}\mathrm {i}\right )}^{1/4}\,1{}\mathrm {i}}{12}-\frac {\sqrt {3}\,\mathrm {atan}\left (\frac {x\,1{}\mathrm {i}}{{\left (8-\sqrt {3}\,8{}\mathrm {i}\right )}^{1/4}}-\frac {\sqrt {3}\,x}{{\left (8-\sqrt {3}\,8{}\mathrm {i}\right )}^{1/4}}\right )\,{\left (8-\sqrt {3}\,8{}\mathrm {i}\right )}^{1/4}}{12}+\frac {2^{3/4}\,\sqrt {3}\,\mathrm {atan}\left (\frac {2^{1/4}\,x}{2\,{\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}^{1/4}}-\frac {2^{1/4}\,\sqrt {3}\,x\,1{}\mathrm {i}}{2\,{\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}^{1/4}}\right )\,{\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}^{1/4}\,1{}\mathrm {i}}{12}+\frac {2^{3/4}\,\sqrt {3}\,\mathrm {atan}\left (\frac {2^{1/4}\,x\,1{}\mathrm {i}}{2\,{\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}^{1/4}}+\frac {2^{1/4}\,\sqrt {3}\,x}{2\,{\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}^{1/4}}\right )\,{\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}^{1/4}}{12} \]

input
int(1/(x^4*(x^8 - x^4 + 1)),x)
 
output
(2^(3/4)*3^(1/2)*atan((2^(1/4)*x)/(2*(3^(1/2)*1i + 1)^(1/4)) - (2^(1/4)*3^ 
(1/2)*x*1i)/(2*(3^(1/2)*1i + 1)^(1/4)))*(3^(1/2)*1i + 1)^(1/4)*1i)/12 - (3 
^(1/2)*atan(x/(8 - 3^(1/2)*8i)^(1/4) + (3^(1/2)*x*1i)/(8 - 3^(1/2)*8i)^(1/ 
4))*(8 - 3^(1/2)*8i)^(1/4)*1i)/12 - (3^(1/2)*atan((x*1i)/(8 - 3^(1/2)*8i)^ 
(1/4) - (3^(1/2)*x)/(8 - 3^(1/2)*8i)^(1/4))*(8 - 3^(1/2)*8i)^(1/4))/12 - 1 
/(3*x^3) + (2^(3/4)*3^(1/2)*atan((2^(1/4)*x*1i)/(2*(3^(1/2)*1i + 1)^(1/4)) 
 + (2^(1/4)*3^(1/2)*x)/(2*(3^(1/2)*1i + 1)^(1/4)))*(3^(1/2)*1i + 1)^(1/4)) 
/12